

I kurrent

Executive Summary

In today's rapidly evolving digital landscape, organizations need
data architectures that provide complete auditability, real-time
insights, and the flexibility to adapt to changing business
requirements. Event sourcing has emerged as a powerful
architectural pattern that captures the full story of how data
changes over time, while Kurrent provides the first and only
event-native data platform purpose-built to maximize the
benefits of this approach.

This whitepaper explores how the combination of event

sourcing principles and Kurrent's specialized capabilities
deliver unprecedented visibility, reliability, and agility for

modern business-critical applications.

© 2025 Kurrent. All rights reserved.

02

1.1 - Event Sourcing for Modern Application

Event sourcing transforms how applications handle data persistence, business logic, and system
integration by treating events as the primary source of truth. Here, we'll examine the fundamental

advantages event sourcing provides for application architecture, from ensuring complete data preservation

to enabling resilient, loosely-coupled systems that can evolve and scale gracefully over time.

Data Preservation: A Pattern That Never Loses Information

Event sourcing is one of the very few architectural Consider a simple customer record update:

patterns that preserve complete data fidelity over in CRUD systems, changing an address

time. Traditional CRUD (Create, Read, Update, overwrites the previous address completely.
Delete) operations are inherently destructive— The business loses critical information:

every UPDATE overwrites previous values, every When did they move? What was their previous
DELETE removes data permanently, and the address? Was this a temporary relocation?
context of why changes occurred is lost forever. Did they move back to a previous address?
This data destruction happens silently and This lost context represents valuable business
irreversibly in operational databases that intelligence that can never be recovered.

prioritize current state over historical context.

Key Benefits:
® Zero data loss - every state change is preserved as an immutable event

= Complete business context - events capture not just what changed, but when, why, and how the change
was initiated

® Decision traceability - full visibility into the sequence of business decisions and their outcomes

© 2025 Kurrent. All rights reserved.

03

https://www.kurrent.io/event-sourcing

In contrast, event sourcing captures every change as an immutable event that is appended to an append-
only log—nothing is ever updated or deleted. When a customer moves, instead of overwriting their
address record, the system creates an "AddressChanged” event containing the new address, timestamp,
and other desired information like reason for the change and who made it. The previous address remains
permanently accessible, along with the complete history of all address changes over time.

Event sourcing unbundles traditional database design into a more powerful and flexible alternative

“Unbundling the database”

Traditional relational database
Opaque, siloed data

Delete Write to a single

purpose data model
Insert

Update

Delete
Update Data model not optimized

for querying or writing!

Insert
Rigid in the face of new
business requirements

Throw away old log data periodically

Delete
Update

Insert

-

Write to a “commit log”
(stream of state changes)

I kurrent

Customer moved
New customer sign-up
Customer married

New customer sign-up

Real time,
event driven data

———————————> [T) OLAP Database
> |of Graph Database
——————————————> 53 Data Warehouse
—) 1:} In memory

Write to data

models optimized for
particular use case

Last name correction ©

Customer archived

New business requirements?

L ———————— Replay events into the new

data model

State changes are “first
class” - the business
context (Event data model)
is kept with the change

Customer suggestion
Customer added dependent

New customer referral

“Jii

Write to a “commit log”

(stream of state changes) The log IS the database

Event Stores become the foundational database technology for operational “source of truth” data. Other “made for purpose”
databases remain relevant, including relational, but layer over event streams to be used for specific query and analytics use cases

Natural Fit for Microservices

Events become the integration contract
between services, eliminating tight coupling and
cascading failures common in synchronous
architectures. When an order is placed, an
"OrderPlaced” event enables the inventory
service to update stock, shipping to prepare
fulfillment, analytics to update metrics, and
notifications to send confirmations—all
independently. Each service can evolve as long
as they understand the event format.

Key Benefits:

» | oose coupling between services through
event-driven communication

* |Independent scaling and evolution of business
capabilities

= Elimination of complex orchestration logic

et N

© 2025 Kurrent. All rights reserved.

Complete Audit Trail and
Regulatory Compliance

Event sourcing provides a legally defensible audit
trail because every change is captured as an
immutable event, typically cryptographically
signed or hashed to prove the record hasn't been
tampered with. Unlike traditional audit logs that
might miss direct database updates, every single
change flows through events with rich context—
not just "field X changed from A to B" but "user
submitted expense report for $500 with receipt
photo and manager approval.”

Key Benefits:

= Complete, tamper-proof history for regulatory
compliance (SOX, GDPR, HIPAA, et al.)

= Rich contextual information beyond simple
field changes

= Elimination of audit gaps common in traditional
systems

B T

N

Time Travel and
Temporal Analytics

Event sourcing enables temporal queries that go
far beyond simple point-in-time recovery.
Organizations can answer complex business
questions like "which customers were marked as
high-risk during the period when our fraud
detection system had that bug?" or "show me the
exact sequence of pricing changes that led to this
customer's final bill." Investment firms use this
capability to backtest trading strategies against
years of market events with precision.

Key Benefits:

= Reconstruct system state at any historical
point

= Analyze business decisions and their
outcomes over time

= Support advanced analytics and machine
learning with complete historical context

Event sourcing shines in its ability to support

multiple data models from the same event stream,

each optimized for different use cases. E-
commerce companies often maintain dozens of
data models: one for product search, another for
recommendation engines, another for inventory
management—all built from the same order and
product events. When new requirements emerge,
teams can build new materialized views by
replaying historical events rather than performing
complex database migrations.

© 2025 Kurrent. All rights reserved.

Superior Debugging
and Root Cause Analysis

Traditional debugging often feels like
archaeology—piecing together what happened
from fragments. With event sourcing,
troubleshooting becomes like watching a movie.
Teams can step through exactly what the system
did at each point, seeing not just the current state
but every event that contributed to it. This
dramatically reduces mean time to resolution
(MTTR) for critical issues.

Key Benefits:

= Complete visibility into the sequence of events
leading to any state

= Ability to replay events in test environments to
reproduce issues exactly

= Rich context for understanding not just what
happened, but why

Key Benefits:

» Multiple specialized data models from a
single source of truth

* New analytics capabilities without
impacting existing systems

= Simplified evolution of data models over
time

05

Resilience and Self-Healing Systems

Event sourcing provides exceptional resilience
capabilities. If a materialized view becomes
corrupted from a bug in the transformation, it can

be completely rebuilt by replaying historical events.

Organizations can fix historical bugs retroactively
by correcting logic and replaying events to fix
every affected transaction. Some companies use
this for zero-downtime migrations, running old
and new systems in parallel until confident in the
new approach.

Key Benefits:

= Ability to recover from data corruption by
rebuilding from events

» Retroactive bug fixes across historical
data

» Zero-downtime system migrations and
upgrades

1.2 - Event Sourcing for Modern Analytics

Event sourcing aligns perfectly with the "Shift Left" philosophy promoted by modern data platform leaders
like Databricks, Snowflake and Confluent. This approach moves data processing, quality checks, and
analytics capabilities earlier in the data pipeline—closer to where data gets originated—rather than

waiting until it reaches the data warehouse.

Early Data Validation and
Schema Evolution

With event sourcing, organizations define
structured events at the point of business action.
This means schema validation, data quality
checks, and business rule enforcement happen at
write-time when teams still have full context.
Instead of discovering data quality issues days
later in the warehouse, it's enforced immediately
when the event is published, dramatically

improving data reliability across the entire pipeline.

Key Benefits:

» Data quality enforced at the source with
full business context

» Schema evolution managed at the
domain level by business experts

» Elimination of downstream data
corruption from poor source data

© 2025 Kurrent. All rights reserved.

Real-time Analytics at the
Source

Event streams become the organization's "live
data warehouse.” Teams can run analytics directly
against the event stream using stream processing
frameworks, eliminating traditional ETL delays.
Business metrics are available within seconds of
events occurring, not after nightly batch jobs
complete. This enables real-time decision making
and immediate response to changing business
conditions.

Key Benefits:

» Sub-second latency from business event
to analytical insight

» Elimination of batch processing delays for
critical metrics

» Real-time alerting and automated
responses to business events

Domain-Driven Data Models

Traditional approaches often involve complex joins
and transformations in the warehouse because
source systems weren't designed with analytics in
mind. Event sourcing encourages teams to think
about business events upfront—what data will
downstream consumers need? This shifts modeling
work to domain experts who understand business
context, rather than data engineers trying to
reverse-engineer meaning from normalized tables.

Key Benefits:

» Data models designed by domain experts
with business context

» Events contain rich business meaning, not
just technical state changes

» Reduced complexity in downstream
analytics processing

Testing and Quality Assurance

Teams can validate entire data pipelines by
replaying historical events through new processing
logic. This shifts testing from production monitoring
to development-time verification. If customer
segmentation logic changes, teams can test it
against months of historical events before
deploying, ensuring analytical accuracy and
business continuity.

Key Benefits:

» Comprehensive pipeline testing using real
historical data

» Validation of analytical logic before
production deployment

» Confidence in data processing changes
through replay testing

© 2025 Kurrent. All rights reserved.

Reduced Data Movement

Instead of extracting, transforming, and loading
massive datasets, downstream systems subscribe
to relevant event streams and build incremental
projections. A recommendation engine doesn't
need to pull entire user profiles—it subscribes to
"ltemViewed," "ltemPurchased,” and "UserRated"
events and maintains its own optimized data
structures. This approach dramatically reduces
network traffic and storage costs.

Key Benefits:

* Minimal data movement through selective
event subscriptions

* Incremental updates instead of full
dataset synchronization

» Optimized storage for specific analytical
use cases

Decentralized Data Ownership

Rather than consolidating all data processing in a
centralized data team, each domain can publish
well-defined events and own their data quality.
The payment team ensures payment events are
clean, the inventory team owns inventory events,
etc. This distributed ownership model eliminates
bottlenecks while ensuring domain expertise
drives data quality at the source.

Key Benefits:

* Domain teams own data quality for their
business events

= Elimination of central data team
bottlenecks

* |mproved data quality through domain
expertise and ownership

Event sourcing represents a fundamental shift from traditional data management approaches, offering
unprecedented advantages for both application architecture and modern analytics. By preserving
complete data fidelity and capturing rich business context, event sourcing eliminates the data loss
inherent in CRUD operations while enabling sophisticated temporal queries, comprehensive audit trails,
and flexible system evolution. For analytics teams, event sourcing naturally aligns with "Shift Left"
principles, bringing data validation, real-time processing, and domain expertise closer to the source of

business events.

Command Quadrant

Query Quadrant

Read

O
Ol
Ol
Qo

However, realizing these benefits depends critically on the
underlying data platform. While event sourcing principles are
powerful, their implementation complexity varies dramatically

@ B ==

-

How an event sourced application is constructed

Immediately Consistent

Eventually Consistent

Command: A request for an action
that can change or write to the
system

(e.g., Payment Gateway)

Message Broker

App

l

Event Store

1 i1

L| stener
Reactlon

External System

|
|
\
|

Reaction Quadrant

Projection Quadrant

Listener

Read Model

Relation Database

Document Database

“

Data Warehouse

|
|
|
|

depending on the chosen technology foundation.

The next section examines why Kurrent stands apart as the
optimal platform for maximizing event sourcing advantages with
minimal complexity.

© 2025 Kurrent. All rights reserved.

Email Server Query: A request to read data from
the system
External API External system: A 3rd party

application that the system has to
update due to some action

Decider: A function that decides if
and how a command would change
the system

Event: A fact that has occured

Event Store: An event sourcing
database designed for storing
events in sequence as they occur

Projection: A function that takes a
set of events and transforms them
into a state

Read Model: A state constructed
by a projection, read optimized for a
use case

Reaction: A component that reacts
to an event with a request to
update an external system

08

I kurrent

02

Kurrent as the
Database of Choice

The architectural advantages of event sourcing are compelling, but
organizations often struggle with implementation challenges when using
traditional databases. General-purpose systems like PostgreSQL, MongoDB,
and Cassandra require significant engineering effort, custom code, and third-
party libraries to approximate event sourcing capabilities—often with
compromises in performance, consistency, or operational complexity. Kurrent
eliminates these implementation barriers by providing a database designed

specifically for event-driven architectures.

Purpose-Built
Event-Native Design

KurrentDB was purpose-built for event sourcing
from the ground up, eliminating the complexity tax
of adapting general-purpose databases. While
PostgreSQL requires careful schema design and
third-party libraries, MongoDB needs external
tools like Emmett, and Cassandra demands
completely custom implementations, KurrentDB
provides native support for immutable streams,
global ordering, real-time subscriptions, and
projections without additional libraries.

Key Advantages:

» Event sourcing capabilities are built-in,
not bolted-on

* No complex schema design or custom
implementation required

» Developers focus on business logic, not
infrastructure concerns

© 2025 Kurrent. All rights reserved.

Global Ordering and
Consistency Guarantees

KurrentDB ensures strict ordering of events within
streams and provides global consistency across
the entire system. This critical requirement is
challenging to implement with traditional
databases—Cassandra requires application-level
sequencing, while MongoDB's eventual
consistency model limits strict ordering support.
KurrentDB's globally ordered, immutable event log
provides lock-free appends with lightning-fast
retrieval.

Key Advantages:

» Built-in global event ordering eliminates
complex application logic

» Strong consistency guarantees for
business-critical operations

» High-performance append operations
optimized for event workloads

09

I kurrent

Sophisticated Event Indexing

KurrentDB employs a specialized indexing system where each event stream has its own dedicated index
entries, enabling direct access without scanning unrelated data. Unlike traditional databases that create
indexes on columns or tables, reading events from an "Order-12345" stream involves a direct lookup
rather than filtering through a global event table. The system uses hash-based indexing with a multi-level
merge strategy that automatically consolidates index files as the database grows, maintaining consistent
sub-millisecond retrieval times regardless of total database size.

Key Advantages:
® |ndividually indexed streams for lightning-fast event retrieval by stream name
= Multi-level index merging maintains performance at massive scale
* Hash-based indexing with midpoints for sub-millisecond seek operations

= Separated index and data storage prevents |/O contention and performance degradation.

How Kurrent stores events

Fine-Grained Streams

Durable writes of atomic events customer- order- shipment- Time as key element(s) in
<key> <key> <key> each event
Time N Version N
"Fine-grained streams" with unique key per 7 Q A pd .

stream and no duplication of data (scalable N IS CEXTN I (RTCITITN I (CEE

to billions of streams) \ ‘.' Q <>

Global ordering across streams

Stream category embedded in key . : 3 A . Intra-stream event causation
(e.g, customer, order, shipment) || emeeeee | eeeeeen o
e Gt e (o e | . 1] _ . Cross-stream event correlation
ideal process alignment N
Time O J Version 1

p- -~ Each event triggers a new stream
Unique identification of events : : : : version for optimistic concurrency
within and across streams O A . <> .

All Stream
AN J

© 2025 Kurrent. All rights reserved. 10

I kurrent

Optimistic Concurrency Built-In

KurrentDB provides native optimistic concurrency
control that prevents lost updates without

pessimistic locking. Applications specify an expected

version number when appending events, and the
database rejects writes if the actual stream version
doesn't match. This "first writer wins" approach
ensures concurrent commands cannot silently
overwrite each other's changes—critical for event-
sourced systems where business logic depends on
previous events. The concurrency control is built
directly into the append operation with multiple
version strategies for different use cases.

Streaming Without External
Infrastructure

KurrentDB seamlessly stores, distributes, and
reacts to events with no external message brokers
required. The built-in pub/sub engine powers real-
time event flows and automates message delivery
out of the box. This contrasts with PostgreSQL's
limited LISTEN/NOTIFY capabilities, MongoDB's
oplog size constraints, and Cassandra’s lack of
native streaming support.

Key Advantages:

* No additional messaging infrastructure
(Kafka, RabbitMQ) required

* Native pub/sub capabilities with
persistent and catch-up subscriptions

» Real-time event processing with
millisecond-level latency

© 2025 Kurrent. All rights reserved.

Key Advantages:

= Native "first writer wins" semantics
prevent lost updates without locks

= Built-in version checking eliminates
custom concurrency implementation

= Multiple version strategies for different
use cases

» High-throughput concurrent writes
without pessimistic locking overhead

Advanced Projections Engine

KurrentDB's projections subsystem allows teams
to process, transform, and semantically link events
in real-time directly within the database. Think of it
as stored procedures for event streams: triggered
by new data, executed in-database, and optimized
for millisecond-level latency. This powerful
capability is especially adept at handling temporal
correlation queries—complex query types that few
databases can match effectively.

Key Advantages:

» Real-time event processing without
external stream processing engines

» Complex temporal queries handled
natively

= Automatic materialized view maintenance
and updates

i

I kurrent

No Operational Limitations

KurrentDB has no significant constraints on event retention. Events are stored indefinitely unless explicitly
deleted, making it ideal for maintaining complete event history. The system is designed for high-
throughput, append-only workloads with clustering support for horizontal scaling.

Key Advantages:
» Unlimited event retention for complete historical accuracy
» No risk of losing events due to retention windows

» Optimized storage and retrieval for massive event volumes (billions of streams)

Enterprise-Ready and Production-Proven

KurrentDB delivers enterprise-grade capabilities backed by over a decade of production deployments
across hundreds of organizations. The platform provides comprehensive security features including
encryption at rest, robust authentication, role-based access control, and compliance with ISO 27001 and
SOC2 Type Il certification standards. These built-in security measures ensure that sensitive business data
remains protected while meeting the strictest regulatory requirements.

Beyond security, KurrentDB offers an extensive enterprise feature set including LDAP integration,
advanced monitoring and observability tools, and sophisticated management capabilities through both CLI
and web interfaces.

As a mature, battle-tested platform, KurrentDB represents over 12 years of continuous development and
refinement since its initial release in 2012. This maturity shows in the platform's stability, comprehensive
feature set, and deep understanding of real-world event sourcing challenges.

KurrentDB's proven scalability is demonstrated in hundreds of production environments where it reliably
handles massive event volumes while maintaining consistent performance. Organizations trust KurrentDB
to serve as their system of record for business-critical data, knowing it can scale from startup workloads
to enterprise-grade demands.

Key Advantages:
» Comprehensive security with enterprise certifications (ISO 27001, SOC2 Type I)

* Production-level capabilities including LDAP, advanced monitoring, and management tools
» Qver 12 years of continuous development and production hardening

» Proven scalability across hundreds of production deployments handling massive event volumes

© 2025 Kurrent. All rights reserved. 12

I kurrent

Works with Your Favorite Clients

KurrentDB provides official client libraries for all major programming languages and platforms, enabling
seamless integration regardless of your technology stack. Native support includes .NET, Node.js, Python,
Java, Go, and Rust, with each client built on the high-performance gRPC protocol for efficient
communication. These officially maintained SDKs provide consistent APIs across languages,
comprehensive documentation, and ongoing support from the Kurrent team, eliminating the need for
custom integration code or community-maintained alternatives of uncertain quality.

Key Advantages:
» Official clients for .NET, Node.js, Python, Java, Go, and Rust
» Consistent gRPC-based protocol across all client libraries
» Comprehensive documentation and code samples for each language

» Officially maintained and supported by the Kurrent team

KurrentDB's purpose-built architecture transforms event sourcing
from a complex implementation challenge into a straightforward
development experience. By providing native support for event
streams, global ordering, real-time subscriptions, and advanced
projections, KurrentDB eliminates the extensive custom
development typically required with general-purpose databases.

Organizations gain enterprise-grade security, unlimited event
retention, and operational simplicity while benefiting from over a
decade of event sourcing expertise built into the platform. The
result is faster time-to-market, reduced technical risk, and the
ability to focus engineering resources on business logic rather
than infrastructure complexity.

© 2025 Kurrent. All rights reserved. 13

I kurrent

‘ Conclusion

Event sourcing represents a paradigm shift toward data architectures
that capture the complete story of business operations, providing
unprecedented visibility, auditability, and flexibility. Kurrent maximizes
these benefits by eliminating the complexity typically associated with
implementing event sourcing on general-purpose databases.

Organizations choosing Kurrent gain access to over a decade of
refined event sourcing expertise, battle-tested in hundreds of
production deployments. The result is a platform that makes event
sourcing simple, scalable, and maintainable—enabling teams to
focus on delivering business value rather than wrestling with
infrastructure complexity.

The choice is clear: leverage Kurrent when event sourcing is core to
your architecture, and avoid the complexity tax of adapting
traditional databases for specialized event sourcing patterns.

For more information about implementing event sourcing with
Kurrent, visit www.kurrent.io or contact our solutions team.

© 2025 Kurrent. All rights reserved.

14

https://www.kurrent.io

